martes, 10 de febrero de 2009

CONDUCTORES, SEMICONDUCTORES Y AISLANTES


CONDUCTORES

Un conductor es un material a través del cual se transfiere fácilmente la carga. Los mejores conductores eléctricos son los
metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad como son el grafito, las soluciones salinas (p.e. el agua de mar) y cualquier material en estado de plasma
Los metales muestran un amplio margen en sus propiedades físicas. La mayoría de ellos son de color grisáceo. El punto de fusión de los metales varía entre los -39 °C del mercurio, a los 3.410 °C del tungsteno. La más baja conductividad eléctrica la tiene el bismuto, y la más alta a temperatura ordinaria la plata.
Los metales suelen ser duros y resistentes. Aunque existen ciertas variaciones de uno a otro, en general tienen las siguientes propiedades: dureza o resistencia a ser rayados; resistencia longitudinal o resistencia a la rotura; elasticidad o capacidad de volver a su forma original después de sufrir deformación; maleabilidad o posibilidad de cambiar de forma por la acción del martillo; resistencia a la fatiga o capacidad de soportar una fuerza o presión continuadas y ductilidad o posibilidad de deformarse sin sufrir roturas.
Es característico de los metales tener valencias positivas en la mayoría de sus compuestos. Esto significa que tienden a ceder electrones a los átomos con los que se enlazan. También tienden a formar óxidos básicos.
Los metales tienen energía de ionización baja: reaccionan con facilidad perdiendo electrones para formar iones positivos o cationes.


ELECTRONES DE VALENCIA

En sus primeros esfuerzos para explicar la estructura electrónica de los metales, los científicos esgrimieron las propiedades de su buena conductividad térmica y eléctrica para apoyar la teoría de que los metales se componen de átomos ionizados, cuyos electrones libres forman un "mar" homogéneo de carga negativa. La atracción electrostática entre los iones positivos del metal y los electrones libres, se consideró la responsable del enlace entre los átomos del metal. Así, se pensaba que el libre movimiento de los electrones era la causa de su alta conductividad eléctrica y térmica. La principal objeción a esta teoría es que en tal caso los metales debían tener un calor específico superior al que realmente tienen.

De acuerdo con dicha teoría, todo átomo de metal tiene únicamente un número limitado de electrones de valencia con los que puede unirse a los átomos vecinos. Por ello se requiere un amplio reparto de electrones entre los átomos individuales. El reparto de electrones se consigue por la superposición de orbitales atómicos de energía equivalente con los átomos adyacentes. Esta superposición va recorriendo toda la muestra del metal, formando amplios orbitales que se extienden por todo el sólido, en vez de pertenecer a átomos concretos. Cada uno de estos orbitales tiene un nivel de energía distinto debido a que los orbitales atómicos de los que proceden, tenían a su vez diferentes niveles de energía. Los orbitales, cuyo número es el mismo que el de los orbitales atómicos, tienen dos electrones cada uno y se van llenando en orden de menor a mayor energía hasta agotar el número de electrones disponibles. En esta teoría se dice que los grupos de electrones residen en bandas, que constituyen conjuntos de orbitales. Cada banda tiene un margen de valores de energía, valores que deberían poseer los electrones para poder ser parte de esa banda. En algunos metales se dan interrupciones de energía entre las bandas, pues los electrones no poseen ciertas energías. La banda con mayor energía en un metal no está llena de electrones, dado que una característica de los metales es que no poseen suficientes electrones para llenarla. La elevada conductividad eléctrica y térmica de los metales se explica así por el paso de electrones a estas bandas con defecto de electrones, provocado por la absorción de energía térmica.

Los conductores tienen la propiedad física de conducir los electrones debido a que un la ultima órbita comúnmente pueden tener menos de cuatro electrones lo cual les da esta característica, El mejor conductor es el oro












SEMICONDUCTORES





Un semiconductor no es más que un material ya sea sólido o liquido con una resistividad intermedia entre la de un conductor y la de un aislador.
A temperaturas muy bajas, los semiconductores puros se comportan como aislantes. Sometidos a altas temperaturas, mezclados con impurezas o en presencia de luz, la conductividad de los semiconductores puede aumentar de forma espectacular y llegar a alcanzar niveles cercanos a los de los metales. Las propiedades de los semiconductores se estudian en la física del estado sólido.

TIPOS DE SEMICONDUCTORES
Gracias a los semiconductores la tecnología del estado sólido a sido reemplazada por completo a los tubos al vació, estos materiales están formados por electrones externos de un átomo, y los cuales son conocidos como electrones de valencia.
Existen dos tipos de semiconductores los de tipo N y los de tipo P y la unión de estos dos formando así un tercero llamado unión PN.




SEMICONDUCTOR TIPO N:




Este tipo de semiconductor trata de emparejar los materiales con respecto a sus cargas y lo realiza con enlace de impurezas a ambos materiales. Por lo tanto, la impureza puede donar cargas con carga negativa al cristal, lo cual nos explica el nombre de tipo N (por negativo).
El material semiconductor de tipo N comercial se fabrica añadiendo a un cristal de silicio pequeñas cantidades controladas de una impureza seleccionada. A estas impurezas también se les llama contaminantes, claro así se le llaman a las impurezas que se agregan intencionalmente. Los contaminantes de tipo N mas comunes son el fósforo, arsénico y antimonio. A estos semiconductores se les conoce también como donadores, y como este nombre lo indica estos semiconductores pasas cargas a el material que le hace falta para así poder emparejar este material, y es por eso que se les conoce mayormente como donadores.




SEMICONDUCTOR TIPO P:
El semiconductor tipo P se produce también comercialmente por el proceso de
contaminación, en este caso el contaminante tiene una carga menos que el semiconductor tipo N, entre los mas comunes podemos encontrar el aluminio, boro, galio y el indio. Conocidos como aceptores el cual contiene espacios y necesita que sean llenados para emparejar el material.




SEMICONDUCTOR UNION PN:
Al combinar los materiales de tipo P y N se obtienen datos y cosas muy curiosas pero lo mas importante y relevante es la formación del tipo unión PN. Una unión se compone de tres regiones semiconductoras, la región tipo P, una región de agotamiento y la región tipo N.
La región de agotamiento se forma al unir estos dos materiales y aquí es donde los átomos que le sobran al tipo N pasan a llenar los espacios que deja el tipo P así complementándose uno con otro. Lo mas importante de la unión es su capacidad para pasar corriente en una sola dirección.




ELECTRONES DE CONDUCCION
Entre los semiconductores comunes se encuentran elementos químicos y compuestos, como el silicio, el germanio, el selenio, el arseniuro de galio, el seleniuro de cinc y el telurio de plomo. El incremento de la conductividad provocado por los cambios de temperatura, la luz o las impurezas se debe al aumento del número de electrones conductores que transportan la corriente eléctrica.

ELECTRONES DE VALENCIA
Una característica fundamental de los semiconductores es de poseer 4 electrones en su orbita.
Los semiconductores tienen la característica de que en su ultima órbita solamente tienen cuatro electrones, por lo cual mezclados con otros materiales funcionan ya sea como aislante o conductores, los materiales semiconductores son cristales como el silicio y germanio de los cuales se pueden dopar con otro material para forma los materiales llamados P o N (depende el dopaje) comúnmente usados en la electrónica.

LOS SEMICONDUCTORES EN LA ELECTRONICA
Los dispositivos semiconductores tienen muchas aplicaciones en la ingeniería eléctrica. Los últimos avances de la ingeniería han producido pequeños chips semiconductores que contienen cientos de miles de transistores. Estos chips han hecho posible un enorme grado de miniaturización en los dispositivos electrónicos. La aplicación más eficiente de este tipo de chips es la fabricación de circuitos de semiconductores de metal - óxido complementario o CMOS, que están formados por parejas de transistores de canal p y n controladas por un solo circuito. Además, se están fabricando dispositivos extremadamente pequeños utilizando la técnica epitaxial de haz molecular.

AISLANTES



Aislante no son más que cualquier material que conduce mal el calor o la electricidad y que se emplea para suprimir su flujo, o sea, que las cargas se mueven con mucha dificultad.
Son aquellos materiales en los cuales los electrones no se desprenden fácilmente, aún aplicando una diferencia de potencial, es decir, una presión eléctrica elevada.

AISLANTES ELÉCTRICOS
Como su nombre lo dice es perfecto para las aplicaciones eléctricas y sería aun mas perfecto si fuera absolutamente no conductor, pero claro ese tipo de material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Un buen aislante apenas poseen electrones permitiendo así el flujo continuo y rápido de las cargas.
En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio, porcelana u otro material cerámico.
La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos.

ELECTRONES DE VALENCIA

Los aislantes están formados por átomos con muchos electrones en sus últimas órbitas (cinco a ocho), por lo que, no tienen tendencia a perderlos fácilmente y a no establecer una corriente de electrones. De ahí su alta resistencia

El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción que dificulta la existencia de
electrones libres capaces de conducir la electricidad a través del material